Security Management of Cloud-Native Applications

Presented By:
Rohit Sharma
MSc in Dependable Software Systems
(DESEM)
Outline

• Context
• State-of-the-Art
 • Design Patterns
 • Threats to cloud systems
 • Security Mechanisms
• Contribution
• Evaluation
• Preliminary Results
• Conclusion and Future Work
Context

- **Cloud Computing:** A model for enabling ubiquitous, convenient, on-demand network access to shared pool of configurable computing resources that can be *rapidly provisioned* and released *with minimal management effort* or service provider interaction. [NIST2011]

- **Cloud-Native Application:** Computer software that natively utilizes services and infrastructure provided by cloud service providers.
Context

Overall Cloud Computing Concerns

• **Network Availability**: Cloud must be available whenever you need it.

• **Disaster Recovery & Business Continuity**: Services should continue even if cloud provider’s production environment is subject to disaster.

• **Security Concerns**

 • **Data Isolation**: Tenant’s confidential data may be comingled with data belonging to others.

 • **Security Incidents**: Tenants need to be informed of security incidents. Also, tenants may require provider support for audits.

 • **Virtualization based Risks**: Heavy use of virtualization introduce new risks such as attacks among VMs on same physical server.

 • **Data Security**: Storing unencrypted data on the cloud can be risky.
State of the Art
Cloud-Native Applications

• **Properties of Cloud-Native Application:**
 • Distribution
 • Elasticity
 • Isolated State

• **Design Patterns**
 • Elasticity Manager
 • Loose Coupling
 • Stateless Components

 • Automated Management
 • Loose coupling
 • Resiliency

 • Stateful Components
 • Message Mover
 • Resiliency
State of the Art

Threats to cloud systems

• Classification of Threats
 • Based on attack surfaces [Gruschka, Jensen2010]
 • Based on layers [C. Modi et al.2012]

• Attack Surfaces
 • User to Service/ Service to User
 • (Buffer-overflow/ SSL certificate spoofing)
 • Service to Cloud/ Cloud to Service
 • (Resource Exhaustion Attacks / Rootkits)
 • User to Cloud/ Cloud to User
 • (Attacks on cloud management interfaces / Attacks originating at cloud)

• Based on Layers
 • Data Storage Level (Co-mingling, weak encryption)
 • Network Level (DDOS, IP Spoofing)
 • Virtualization level (Hypervisor Compromise e.g. blue pill)
 • Application Level (SQL injection, XSS)
State of the Art

Threats to cloud systems

Top threats as identified by *Cloud Security Alliance* [CSA2010]

- Abuse and Nefarious Use of Cloud Computing (DDOS)
- Insecure Application Programming Interfaces (Reusable tokens)
- Malicious Insiders
- Shared Technology Vulnerabilities (Hypervisor compromise)
- Data Loss/Leakage (Weak authentication, authorization, audit controls)
- Account/Service/Traffic Hijacking (Phishing, Exploiting vulnerabilities)
- Unknown Risk Profile (No transparency in internal security procedures, patching, auditing & logging)
State of the Art

Security Mechanisms

• Implementing security controls in *layered* fashion

• **Honeypots**: Create a false non-production system to entice the attacker. Once attacked, distract the attacker and report the incidence

• **Sandboxing**: Add a layer between code and OS. E.g.: Hypervisor

• **Isolation**:
 • Use encryption for VM network traffic to provide logical isolation
 • Isolation using subnets

• **Auditing & Monitoring**
 • Use of Configuration management database (CMDB)
 • Use of Attack signatures to match events of interest
 • Provide feedback loop to the system operating the cloud infrastructure
 • More sophisticated detection possible using situational awareness
Limitations of Security Mechanisms

• Traditional security techniques being applied in cloud infrastructure.
• The techniques not specific to cloud-native applications.
• Security in cloud-native applications is complex as it’s a conjunction of many other services provided by IaaS, PaaS, SaaS.
Contribution

• Goal
 • Build a solution that is capable to address specific security requirements of cloud-native applications
 • Develop a security approach for cloud-native application

• Security Approach for Cloud-Native Applications
 • Cloud-native application modeling
 • Detection Mechanism
 • Prototyping & Evaluation
Contribution

Modeling the Cloud-Native application

• Each software component performs a particular class of tasks
 • (e.g. {Presentation, Authentication, DataAccess})
• Each component may be dependent on other software components.
• Each component is elastically scalable
 • Each component may contain multiple instances of same software module
 • Each instance is represented by a node
 • Each component performs only one class of tasks
• Set $S =$ set of nodes (*represents instances of software modules*)
• Set $C =$ set of class of tasks (*can be mapped to functional clusters*)
 • Function *Role: $S \rightarrow C$* associate nodes with functional clusters
• Each cluster may be dependent on other clusters
 • Communication among clusters can be represented by $\eta \subseteq C \times C$
Contribution

Abstract Model

- **Nodes** $S =$

 \[\{N_1, N_2, \ldots, N_{14}\} \]

- **Clusters** $C =$

 \[\{\text{Presentation, Bl}_1, \text{Bl}_2, \text{Bl}_3, \text{Bl}_4, \text{KeyValue, RelationalDB}\} \]

- **Dependencies** $\eta =$

 \[\{e_1, e_2, \ldots, e_{9}\} \]

- **Cloud Application** $\text{App}= <C, \eta>$ where $\eta \subseteq C \times C$
Contribution

Communication Among Nodes

- Abstract model does not specify communication among specific instances.
- Only one edge per request between one cluster to another.
- Elastic load balancer decides the instance to which the request should be forwarded within a cluster.
- We mimic this behavior using notion of probable edges out of which only one edge (selected non-deterministically) is realized.

Probable edges

Realized edge
Contribution

Modeling the Computation

• Set of requests $R = \{r_1, r_2, \ldots, r_n\}$
• Each request $r_i \in R$ can be seen as interaction among a set of nodes $S' = \{N_i\} \in S$
• Each interacting node shall belong to a different cluster $\forall N_i \in S'$, $\text{Role}(N_i)$ is distinct
• Each request processing can be represented as a graph
 • $G_i = <S', \eta'>$ where $\eta' \subseteq S' \times S'$ (realized edges)
Contribution

Detection Mechanisms

• We want to analyze the behavior of cloud-native applications.
• To detect potential attacks by analyzing abnormal behavior.
• We use a detection approach based on k-means clustering to detect malicious activities.
Contribution

Some Possible Symptoms

• Request path not complete
 • Request trace did not reach one of the nodes in a set of termination nodes.
 • **Possible Reasons:** Low level exploits such as EIP overwrite, crashes due to stack overflow.

• Deviation from dependency path
 • Each cluster may be dependent on other clusters.
 • Abnormal behavior in case the request path violates the dependency path.
 • **Possible Reasons:** Vulnerabilities in APIs.

• Biasness
 • Some nodes may be biased towards a particular dependent cluster.
 • **Possible Reasons:** Misuse of a particular feature in the application.
Evaluation

• Built a simulator to represent the behavior of cloud-native applications and potential attacks.
• Using k-means clustering algorithm to detect potential attacks.
Evaluation

Preliminary Results

• Receiver operating characteristic (ROC) curve generated using sensitivity and specificity calculations.

• Allows to evaluate the performance of the detection

• The current performance is good but we have modeled very simple attacks
Conclusions & Future Work

• Proposed Security Approach for Cloud-Native Applications
 • Cloud-native application modeling
 • Detection Mechanism
 • Prototyping & Evaluation

• Future work
 • Modeling more complex attacks.
 • Extracting traces from openstack infrastructure.
Questions ?