Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Felicia Halim
Erasmus Mundus Msc in Dependable Software Systems
Supervisors: Dr. Mike Weir
June 2015
Project Description

✓ Local Minimum is common throughout heuristic cost-based search

✓ Standard technique: Gradient Descent in cost

✓ Standard method gets stuck in the local minimum
Objectives

✔ Develop an algorithm that improves heuristic performance

✔ Implement the algorithm in **Robot Navigation & Neural Network**

✔ Benchmark with standard method
Robot Navigation
Local Minimum Problem in Navigation

✓ Robot can get stuck upon entering inside of C-shape obstacle

✓ To escape from that region, the potential cost have to temporarily going up

✓ The standard method always minimize the potential cost
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Fractional Progress Design

\[
\text{Past} \quad \text{progress} = \frac{\text{Past}}{\text{Past + Future}}
\]

Move to B or C? Move to B

\[
B: \quad \frac{\text{Cost } AB}{\text{Cost } AB + \text{Cost } BG} = \frac{3}{3 + 6} = 33.3 \%
\]

\[
C: \quad \frac{\text{Cost } AC}{\text{Cost } AC + \text{Cost } CG} = \frac{4}{4 + 9} = 30.7 \%
\]
Potential Fields in Navigation (1)

✓ Potential fields associate next moves with *potential values*

✓ Represent the *desirability* towards the optimal solution

✓ High potential value \rightarrow less desirable position

 lowest point on the field \rightarrow considered as an optimal solution
Potential Fields in Navigation (2)

✓ Goal Potential:

\[Potential_{goal}(x, y) = (x - x_G)^2 + (y - y_G)^2 \] \hspace{1cm} (1)

✓ Obstacle Potential:

\[Potential_{obstacle}(x, y) = \begin{cases}
 0, & d_i \geq \text{fall off range} \\
 \sum_{i=1}^{n} \left(\frac{1}{a_i} \right) e^{-\frac{d_i}{a_i}} - e, & d_i < \text{fall of range}
\end{cases} \] \hspace{1cm} (2)

✓ Total Potential:

\[Potential_{total}(x, y) = Potential_{obstacle}(x, y) + Potential_{goal}(x, y) \] \hspace{1cm} (3)
Fractional progress algorithm in Navigation (1)

STEP 1: Get current robot configuration
 Current and goal position, sensors data

STEP 2: Generate all sample points from current position
Fractional progress algorithm in Navigation (2)

STEP 3: For each sample point, Calculate the % fractional progress

past effort: Potential change from start to sample point

future effort: Potential change from sample point to goal

STEP 4: Apply the ‘best sample point’ (most % progress)

STEP 5: If agent robot has reached the goal, terminate

or else do step 1-4
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Robot Simulator

From previous work

Robot Simulator

Robot Controller

Controller factory
- Fractional Progress
- Standard Method

Create controller

Thread

Start

Process new sensor data

Compute control

Send control
Robot Navigation Evaluation
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

<table>
<thead>
<tr>
<th>Non-Concave Obstacle</th>
<th>Low Concave Obstacle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moderate Concave Obstacle</th>
<th>Highly Concave Obstacle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Standard Method

Fractional Progress

Shallow Concave Obstacle

Moderate Concave Obstacle
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Highly Concave Obstacle

Standard Method

Fractional Progress
Robot navigation evaluation

Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Felicia Halim

Summer School 2015
Neural Network
Introduction to Neural Network

Classification Task

\[H1 = -\frac{w1}{w4} x - \frac{w3}{w4} \]
\[H2 = -\frac{w2}{w5} x - \frac{w6}{w5} \]
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Introduction to Neural Network

Update the weights

y

h2

h1

x

Update the weights

y

h2

h1

x
Local Minimum Problem in Neural Network

✓ The standard back-propagation algorithm uses gradient descent.

✓ Standard algorithm works by minimizing the network error.

✓ At some point, network error has to temporarily go up, but the standard method does not allow to do so.
 → stuck in the local minimum problem.
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Fractional progress algorithm in Neural Network (1)

STEP 1: Initialize the network
- Initial weight configuration = \([w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9]\)
- Start = initial network error
- Goal = 0

STEP 2: Generate list of sample points
- Example: \([w_1, w_2]\)
- Rate of change \((rc)\)
Fractional progress algorithm in Neural Network (2)

STEP 3: For each sample point, Calculate the % fractional progress
- Validate the sample point
- Potential = network error
- Past effort: Potential change from start to sample point
 Future effort: Potential change from sample point to goal

STEP 4: Apply the ‘best sample point’ (most % progress)

STEP 5: If stopping condition is true, terminate or else do step 1-4
In order to evaluate the general performance of the fractional progress, initial hyperplane(s) position was set to random position.

Average Execution time per cycle

<table>
<thead>
<tr>
<th>Method</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Method</td>
<td>0.007</td>
</tr>
<tr>
<td>Fractional Progress</td>
<td>8.22</td>
</tr>
</tbody>
</table>
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress
Enhancing the Efficiency and Effectiveness of Heuristic Search through Fractional Progress

Standard Method

Fractional Progress

Felicia Halim
Conclusion
Conclusion

- Implement the fractional progress technique in the robot navigation and neural network.

- Design local minimum problems

- Evaluate the performance of fractional progress against the standard method.
Thank you